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Abstract
Particle simulations are at the heart of the search for dark matter.
The ability to quickly and accurately resolve dark matter subhalos–
regions of virialized dark matter gravitationally bound to larger host
halos–can help investigate regions of parameter space quickly and ef-
ficiently. We explore the self-interacting dark matter (SIDM) and a
more efficient method to incorporate interactions between simulated
dark matter subhalos and their host, represented by an analytic po-
tential. This approach could greatly reduce the computational power
required to incorporate such host-subhalo interactions while main-
taining high accuracy. We conclude by incorporating these modifica-
tions into the codebase of the popular multi-physics and cosmological
simulation suite GIZMO.
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1 Introduction

1.1 Historical observations

In 1933, Swiss Astrophysicist Fritz Zwicky pub-
lished a paper of his findings studying the Coma
Cluster, a large galaxy cluster located in the con-
stellation Coma Berenices. Zwicky used spec-
troscopy to calculate the velocities of galaxies
in the cluster. He then used the cluster’s over-
all luminosity to estimate its mass, and therefore
its escape velocity. When comparing the two,
Zwicky made a startling discovery. He found
that the galaxies in the cluster had velocities far
too high to be gravitationally bound by the visi-
ble mass of the cluster alone [23].

This left one of two possibilities: either
Zwicky miscalculated the galaxy velocities, or
he miscalculated the cluster’s escape velocity. In
his paper, Zwicky concluded the latter and esti-
mated the ratio of non-visible matter to visible
matter in the cluster was 400:1 [24]. While this
would turn out to be highly overestimated, the
core conclusion was still valid: there is far more
matter in the Universe that we cannot see, than
matter that we can.

Zwicky’s conclusions were not immediately
taken seriously, and it wouldn’t be until much
later and with much more evidence that the the-
ory of dark matter became widely accepted. One
of the more compelling pieces of evidence for
the existence of dark matter came from the anal-
ysis of galaxy rotation curves in the 1970s.

1.2 Galaxy rotation curves

To understand how shocking the results of
galaxy rotation curve analyses were, let’s first
examine the simple Newtonian case, excluding
dark matter. Assuming the only force acting on
stellar bodies is the gravitational force (not a bad
approximation) we can equate the centripetal ac-
celeration to the gravitation acceleration as fol-

lows [19]:

v2

r
=
GM(r)

r2
(1)

Where G is the gravitational constant, v is
the body’s tangential velocity, and M(r) is the
galaxy’s mass interior to the radius r [8]. Now
solving for the velocity v, we find:

v(r) =

√
GM(r)

r
(2)

Looking at our solar system, the mass of the sun
dominates the mass of the solar system, so we
can make the approximation M(r) ≈ M� for
all planetary bodies [22]. This implies that the
further a body is from the sun, the slower its ve-
locity around the sun. This is a slightly mod-
ified version of Kepler’s third law and is well
corroborated by everything we see in our neigh-
borhood.

So, it was assumed that a similar relation-
ship likely held for galaxies, since the bulk of
the baryonic matter (the matter which interacts
with light) is concentrated at the center of the
galaxy–much like in the solar system–thus we
would expect a velocity decay roughly propor-
tional to r−

1
2 [13].

Figure 1: Graph showing the galaxy rotation curve of NGC 3198 [12]

However, this assumption is contradicted by
the observed rotation curves of galaxies, as seen

1



in figure 1. Rotation curves show that rather
than decaying with increasing radius, the tan-
gential velocities of gravitationally bound mat-
ter in galaxies remain mostly constant regardless
of their distance from the galactic center [18].

Several solutions were proposed to recon-
cile decaying velocity curves–as predicted by
Newtonian dynamics–with the constant ones ob-
served. One theory, proposed by Israeli Physi-
cist Mordehai Milgrom was coined Modified
Newtonian Dynamics. MOND suggests that
Newton’s Laws function differently on galac-
tic scales than on smaller, solar system scales
[14]. However, even by modifying Netwon’s
laws, MOND cannot account for all the mass
required to explain certain galaxy clusters [Mc-
Gaugh]. However, even if this aspect of the
theory were resolved, MOND would still fail
to compete with the explanatory power of dark
matter. The dark matter model, by contrast, is
well supported by weak and strong lensing, Big
Bang nucleosynthesis, and the large-scale struc-
ture of the Universe, among others [5].

The inclusion of dark matter reconciles the
apparent tension between Newtonian dynamics
and observed rotation curves by changing our
assumptions about the mass profiles of galaxies.
Constraints on the amount of dark matter in the
Universe put its prevalence at approximately 5
times more abundant than baryonic matter [5].
These constraints increase the amount of matter
in galaxies sufficiently enough to reproduce the
rotation curves as given by the data.

1.3 Dark matter candidates
If we take seriously the theory of dark matter, a
key property of all prospective dark matter can-
didates is that they do not interact–or interact
very weakly–with light. A more technical de-
scription is that any prospective dark matter can-
didate must have a very small interaction cross
section with photons–the electromagnetic gauge
boson. However, this still leaves many possible
dark matter candidates.

Some possible dark matter candidates live
comfortably in unexplored parameter space,
others are consequences of theories presented as
solutions to unrelated problems but also make
compelling dark matter candidates, but none of
them have been constrained well enough, or ob-
served definitively enough to be the conclusive
front runner in the field. The field of dark matter
candidates is very much still evolving and un-
dergoing active research.

1.3.1 WIMPs

WIMPs or weakly-interacting massive particles
are theoretical subatomic particles with a mass
around mw ∼ 10 GeV- 10 TeV. WIMPs are
one of the most studied dark matter candidates,
they are a consequence of theories in particle
physics and hold the promise of being directly
observable on earth [5]. Additionally, the theo-
ries which predict the existence of WIMPs also
constrain their relic density to a value consistent
with that required of dark matter, this fact is of-
ten referred to as the WIMP miracle [5].

The early Universe was a much denser and
much hotter place. Regions of space con-
tained particles in sufficient quantities and at
high enough temperatures to allow for the cre-
ation of heavier particles from lighter ones due
to interactions. Likewise heavier particles could
undergo pair production, creating lighter parti-
cles. For a period of time, these two processes
occurred in relatively equal amounts. However,
as the Universe expanded and cooled this ther-
mal equilibrium broke down, and there ceased
to be enough particles to allow for the creation
of heavier particles from the interactions of two
lighter ones. As a result, the abundance of these
heavier particles has remained constant since the
early Universe. This gives rise to a useful quan-
tity in describing dark matter candidates: relic
density. A particle’s relic density is its density
just prior to freeze-out.

Another tantalizing aspect of WIMPs is that
they can in theory be detected on earth either in-
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directly or directly. This is a rarity as all ob-
servational data of dark matter currently only
comes from its gravitational influence. In order
to detect WIMPs we first assume they annihi-
late with one another, producing particles in the
standard model. It may in turn be possible to de-
tect these produced particles giving indirect evi-
dence for the existence of WIMPs.

Another possible detection method is di-
rect detection. Since we expect these particles
to interact only via the weak force, their in-
teraction rate would be exceedingly low mak-
ing them very difficult to detect and differenti-
ate from background noise in the detector. So
WIMP detectors including DEAP, ZEPLIN-III,
and XENON are placed very deep underground
and great care is taken to eliminate all other
contaminating sources. They use large vats of
Nobel gases supercooled to liquids as their de-
tection mediums. In theory, if a stray WIMP
were to pass through the detector at just the right
place, it could interact with the nuclei of the No-
bel gas, exciting it and causing the emission of
a photon, which in turn could be seen by the de-
tector.

However as of yet, despite an extensive
effort by particle physicists the world over,
WIMPs have never been detected. Casting
doubt on their existence and constraining them
to ever-smaller regions of parameter space.

1.3.2 MACHOs

Another dark matter candidate are massive as-
trophysical compact halo objects, also called
MACHOs. These are astrophysical objects
which are typically made of baryonic matter, but
which have extremely high mass-to-luminosity
ratios. These objects could contribute substan-
tially to the mass of their host galaxy while re-
maining very difficult to detect and thus difficult
to have their mass accounted for with observa-
tions.

One possible MACHO candidate is black
holes. Isolated black holes–absent of an accre-

tion disk–do not emit any light and could exist in
far greater numbers than currently predicted. If
true this would certainly account for some of the
missing mass attributed to dark matter. Other
possibilities include brown dwarfs: massive gas-
giant-like objects, just shy of undergoing hydro-
gen fusion in their cores. These ’super Jupiter’
objects are very massive but produce very little
light of their own. Another candidate is neutron
stars: the cores of dead stars not large enough
to explode in supernovae. Since Neutron stars
are extremely dense and are not actively under-
going fusion, they have low luminosity, but still
account for the majority of the mass of the stars
they were formed from.

MACHOs are compelling since they are al-
ready known to exist, and have low enough lu-
minosities to remain mostly unaccounted for in
mass calculations. Since we know they exist,
they likely account for some percentage of the
dark matter in the Universe; but studies have
cast doubt on their ability to account for all of
it. One such study found that only 10 − 40% of
the Milky Way’s dark matter halo could come
from MACHOs [6].

Another roadblock for MACHOs is the fact
that we know that the majority of dark mat-
ter must come from non-baryonic sources, and
while MACHOs can be non-baryonic, elimi-
nating the baryonic MACHO sources reduces
the effectiveness of the argument made previ-
ously regarding MACHOs coming from well-
understood sources [5].

1.3.3 Axions

Axions are a theoretical subatomic particle,
whose existence is implied by a field first pro-
posed by Helen Quinn and Roberto Peccei in
1977, as a solution to the strong CP problem
[16]. A simplified example of the strong CP
problem can be seen as follows:

Neutrons are composite particles, made of
three quarks: one up and two down quarks. Each
of these quarks carries their own electric charge,
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but combine to generate a net zero charge. For a
moment consider another such composite struc-
ture, sayH2O. H2O is likewise electrically neu-
tral but comprised of non-neutral atoms. This
gives rise to water being polarized, which is to
say it has a measurable electric dipole moment.
We would expect the same to be true of the neu-
tron. However, this is not the case. Instead, the
neutron appears to have an electric dipole mo-
ment far lower than its theoretical value. Specif-
ically, its electric dipole moment has been con-
strained on the order of de < 10−27e cm [1],
while theory puts their EDM at de ≈ 10−16e cm.

And while the axion was first proposed as a
consequence of a new field proposed to solve the
above problem, they also have properties that
would make them a compelling candidate for
dark matter. Even though axions would need
to be extremely low mass, with a lower bound
of approximately 10−5eV and an upper bound
of order 10−3eV , they would need to be ex-
tremely numerous [15]. Models suggest axions
would likely have very low interaction cross sec-
tions for the strong and weak forces and carry
no charge for interaction via the electromagnetic
force [4].

1.4 ΛCDM
Before discussing self-interacting dark matter–
which will be the subject of the remainder of this
paper–we first need to discuss the model which
it inherits (albeit with some key differences).

ΛCDM is a framework that is considered
“the standard model of big bang cosmology.”
The model began to take shape in the early
1960s and by the early 1990s, it includes an
explanation for the expanding rate of the Uni-
verse, in the form of dark energy (the Λ in its
name). Additionally, the model explains the
anisotropy of the cosmic microwave background
(CMB) with inflation, a brief period of superlu-
minous expansion of spacetime [7]. Lastly, the
model also assumes a flat spatial geometry and
includes so-called “cold dark matter” (CDM)–

dark matter which has low average kinetic en-
ergy.

There is good justification for why we as-
sume cold dark matter. When we look around
the Universe we see pockets containing high
densities of visible matter, surrounded by large
empty regions. Since cold dark matter has low
kinetic energy and no non-gravitational interac-
tions with baryonic matter, it can more read-
ily collapse in on itself, creating localized over-
densities [21]. The result is the pooling of
mass in regions creating an analytic potential
that draws in baryonic matter, forming the large-
scale structure in the Universe.

The ΛCDM model makes very few predic-
tions about what the dark matter particles them-
selves could be. It simply provides a frame-
work for the broad characteristics that the dark
matter candidate must adhere to. Both Axions
and WIMPs, for instance, are compatible with
ΛCDM as possible cold dark matter candidates.
While they both are proposed to have interac-
tions outside of gravity, these interactions would
be negligible and have no effect on the large-
scale structure of the universe [21].

It’s difficult to overstate the success of the
ΛCDM model at large cosmic scales. It agrees
remarkably well with the observed large-scale
structure of the Universe, the distributions of
galaxies and matter in the Universe, and the
aforementioned galaxy rotation curves.

Despite ΛCDM’s successes at large scales,
the theory encounters some challenges at small
scales.

1.5 Challenges to ΛCDM
As alluded to in the previous section, ΛCDM,
while successful at large scales, encounters sev-
eral issues on length scales less than 1 Mpc and
on mass scales less than 109M� [Bullock Boy-
lan].

It is important to note that many of the chal-
lenges to CDM presented in the following sec-
tions arise as a result of DM-only simulations. It
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is possible–and some argue–that these tensions
could be resolved or at least lessened with the
inclusion of baryonic processes [21].

1.5.1 The Core-Cusp Problem

In the early 1990s, researchers began to look at
the rotation curves of dwarf galaxies DDO 170
and 154 among others. Using spectroscopy as-
tronomers were able to get measurements of the
galaxy’s velocity profiles as a function of ra-
dius [11, 3]. We can then define a region of the
dark matter halo within which, the virial theo-
rem holds.

A dark matter halo is a region of gravitation-
ally bound dark matter particles, while a sub-
halo is a virialized clump of dark matter con-
tained within a larger “host halo”.

Using the virial theorem, we can acquire a
density profile (density vs. radius) for the dark
matter halo. This turns out to be a very useful
metric for analyzing dark matter halos and gives
interesting results in the case of dwarf galaxies.

Figure 2: Dark matter only N-body simulation of halo density profiles
[20]

In figure 2, we can see the simulated density
profiles of a dwarf galaxy given CDM (black),
and various interaction cross sections for SIDM

(colored). Simulations for cold dark matter ha-
los exhibit a relatively constant −1 slope in log
scale. As you approach the center of the galaxy,
the density of the surrounding matter increases
exponentially. With nothing preventing this col-
lapse we are left with a sharply peaked central
density, or what cosmologists refer to as a cusp.

If we keep everything in the simulation the
same but introduce a dark matter self-interaction
cross section σ, the two profiles look similar
at radii larger than 1 kpc. However, at smaller
radii, the self-interactions generate a sort of
“pressure”, preventing further collapse of the
halo thereby forming a larger region of constant
density at the center—or core—of the galaxy
[2]. Additionally, as is apparent from figure
2, the density profile of the dwarf galaxies is
fairly resilient to the interaction cross section of
SIDM we choose, which avoids any issues of
fine-tuning.

Comparing the results of such observations
of dwarf galaxy rotations with the simulations
presented in figure 2, a telling picture emerges.
Dark matter halos in dwarf galaxies form cores
rather than cusps. To reiterate, these results
come from DM-only simulations and despite
their best agreement coming from dwarf galax-
ies, which are DM-dominated, there is still de-
bate as to how resilient these results are to the in-
troduction of processes involving baryonic mat-
ter.

1.5.2 The Missing Satellites Problem

Under the highest resolution simulations yet de-
vised, we expect to see on the order of a few
thousand subhalos with masses of Mpeak &
107M� [2].

Despite this, when analyzing data collected
from observations only ∼ 50 satellite galaxies
with masses as low as ∼ 300M� have been
detected [2]. While it is likely more subhalos
within the mass range expected will be found,
it seems unlikely that enough can be found to
completely resolve this tension.
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1.6 Self-interacting dark matter

Despite the fact that dark matter must interact
only very weakly–if at all–with all forces other
than gravity, provided that the dark matter par-
ticle is low mass, there is nothing that forbids
self-interactions.

This is the foundation for self-interacting
dark matter (SIDM). By assuming some self-
interaction cross section for our dark matter par-
ticle, we can preserve the success of CDM on
large scales, while mitigating some of the issues
ΛCDM faces on small scales [17].

1.6.1 Interaction cross sections

While there are differing accounts of the con-
straints on the interaction cross section of
SIDM, observational constraints from the Bullet
Cluster put the interaction cross section of dark
matter at σ/m . 1 cm2/g. This cross section
is quite large by all accounts and would likely
be large enough to resolve the core-cusp prob-
lem[21].

As explained earlier, many different dark
matter candidates are allowed by the ΛCDM
model. The same is true of SIDM, however
with an added caveat. Since we require self-
interactions, there must be both a SIDM parti-
cle and an associated mediator, both of which
require new particles outside of the standard
model.

In general, the force which governs the self-
interactions is given as a Yukawa potential:

VY (r) = α′
e−µr

r
(3)

Here α is the coupling constant, µ is the me-
diator mass and r is the distance to the particle.
On possible SIDM mediator of the Yukawa po-
tential could be a so-called dark photon which,
unlike a typical photon, need not be massless
[9]. As the name implies, dark photons re-
side in a theoretical region know as the dark
sector, outside the Standard Model of particle

physics. The interaction cross section for self-
interactions strongly depends on the ratio of me-
diator mass to particle mass.

This allows us to infer properties of the dark
matter particle and its mediator, from constraints
placed on the interaction cross section. This
is very useful and has been used to constrain
the ratio of masses based on observations of the
Bullet Cluster (1E 0657-56).

1.6.2 Observational evidence

When it comes to actively analyzing dark mat-
ter, few regions in space hold as much promise
as the Bullet Cluster. The Bullet Cluster is a
high-velocity galaxy cluster merger.

As the two galaxy clusters merge, the gas
which resides in the space around them collides
at high velocities and begins to heat up, emitting
x-rays. These x-rays can be observed and al-
low us to pinpoint the central mass of the bary-
onic matter. However, when we compare this
with the distribution of total matter in the clus-
ter, found through gravitational micro-lensing,
we find a discrepancy. The mass distributions do
not align. Not only does this point to the exis-
tence of dark matter, but it can be a valuable tool
for determining constraints for the cross section
of SIDM [9].

Additionally, by analyzing the shapes of the
mass distributions of the galaxy clusters we can
get some insight as to whether the dark matter
underwent strong self-interactions, or if the dark
matter halos acted as collisionless cold dark
matter.

While the work our group is doing does not
directly relate to the Bullet Cluster, it is one of
the most promising places to look for observable
evidence of SIDM.

2 Methods
In order to make predictions and build theories
around SIDM, we rely on simulations. As men-
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tioned earlier the only directly observable evi-
dence for dark matter comes in the form of its
gravitational influence.

While some attempts are being made to di-
rectly observe dark matter particles, most cos-
mologists rely on carefully analyzing the ob-
servable structure of galaxies, dark matter ha-
los, and the Universe and comparing it with the
structure as predicted by simulations.

Being able to vary the parameters for dark
matter, define the initial conditions, then run the
clock forward and analyze the resulting data is
extremely powerful.

A promising application of this repeated
simulation approach is simulating the time evo-
lution of dark matter subhalos of the Milky Way.
By generating initial conditions for dark matter
subhalos and analyzing the simulation data as
they interact with the Milky Way, we can better
understand the effects self-interactions have on
a subhalo’s evolution in the presence of its host.

This technique while effective is also ex-
tremely demanding in terms of compute hours.
Simulating hundreds, thousands, or even mil-
lions of particles and their interactions on
timescales on the order of the age of the universe
is no easy task.

These simulations require lots of time on
computer clusters (often referred to as super-
computers) to successfully run. Even on these
clusters, we need to be extremely diligent in en-
suring that the code responsible for the simula-
tions is written efficiently.

2.1 Simulation software
The analysis which follows builds on the work
of Philip Hopkins, creator of GIZMO a fork of
the earlier GADGET-2 N-body simulation suite
written by Volker Springel. GIZMO is a mas-
sively parallel, multi-physics simulation suite,
containing modules for hydrodynamics, fluid
physics, star formation among others.

In 2010 code was added to the simulation
suite of GADET-2 (and subsequently incorpo-

rated into GIZMO) to include self-interactions
for dark matter simulations. It is this module
that is the focus of several changes aimed at
incorporating interactions between a simulated
dark matter subhalo and its host.

2.2 Host-subhost interactions

As discussed earlier, dark matter halos are large
regions of gravitationally bound dark matter,
while subhalos are virialized clumps of dark
matter contained within the larger host. Over
time, as the subhalos orbit the center of the host
halo, they undergo several effects which affect
their mass distribution and density profiles.

2.2.1 Tidal stripping

One such effect comes from tidal stripping. As
the subhalo orbits ever closer to the central den-
sity of the host, its exterior begins to be stripped
away by the gravitational pull of the host. This
effect is more dramatic in the case of SIDM than
it is for CDM. This is a direct result of the more
cored density profiles SIDM creates. Since the
central density of SIDM subhalos is larger and
more diffuse than that of CDM, the matter at fur-
ther radii from the center of the subhalo is bound
less tightly and thus more easily stripped.

7



Figure 3: Time evolution of CDM subhalo density profile as a function
of radius while it it stripped by its host. An NFW overlay is superim-
posed on the plot as the dashed black line. This plot was made by Alex
Lazar and is included with his consent.

As we can see from figure 3, initially the
dark matter subhalo is represented by an NFW
profile. However as time increases, it’s density
at around 10 Mpc is reduced, this is a result
of tidal stripping. As more and more mass is
stripped away from the subhalo, its density in
the outer regions decreases.

2.2.2 Ram Pressure

Another effect on subhalo evolution is ram pres-
sure. This is a sort of drag force resulting from
the movement of a body through a medium.
This drag is cause by the bulk motion of the par-
ticles in the two mediums as the move through
one another. In the case of dark matter subhalos,
ram pressure creates drag as the subhalo moves
through the host halo’s background density.

2.2.3 Self-interactions

The self-interactions proposed by SIDM are not
limited to the subhalo itself. As the subhalo falls
into its host, the subhalo particles are free to
interact with the particles in the host and visa
versa. These interactions–while not currently
included in most simulations–could affect the
evolution of the subhalo.

While interactions between a DM subhalo
and its host would have a minimal effect on the
subhalo’s evolution at large distances, during in-
fall the rate of host-sub interactions increases
dramatically, which can cause changes in the
subhalo’s evolution.

When considering the interactions between
the host halo and the subhalo, there are two pri-
mary calculations which need to be considered,
the probability of a given interaction, and the re-
sulting momentum transfer.

2.2.4 Probability of interaction

First we need to calculate the probability that a
given particle will interact with other particles in
it’s neighborhood. GIZMO calculates this in the
same way as presented in Kummer et al. 2017
[10]:

Γ =
ρ σ v0
mχ

(4)

Here ρ is the mass density of the DM back-
ground at the particle’s location, σ is the cross
section of the particle (this can be velocity de-
pendent), v0 is the particle velocity in the rest
frame of the DM background, andmχ is the dark
matter mass.

At each timestep, GIZMO loops through
all of the simulated particles and searches for
neighbors close by which could possibly inter-
act. For each neighbor, this probability is com-
puted and compared against a random number
generator to determine if an interaction has oc-
curred.

2.2.5 Momentum transfer

Once an interaction is determined to have taken
place, GIZMO applies a momentum transfer to
the particle pair. The process is fairly straight-
forward as the collisions are elastic.

GIZMO calculates the angle at which the
two particles scatter in a Monte Carlo process,
assuming random angles in the center of mass
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frame of the collision, i.e. isotropic scattering.
However, this is not completely accurate, in the
particle collisions we expect the density of scat-
tering angles to be sharply peaked in the forward
direction.

A solution to the above issue should be im-
plemented in future additions to the codebase
but is not the focus of this research.

2.2.6 Simulating a live host

First, we could simulate the dark matter host
halo in addition to the subhalo. To do this re-
quires simulating all of the dark matter particles
of the host halo regardless of if they ever interact
with the subhalo. This method is quite simple,
all that is required is to define the parameters
of the host halo–in our case the Milky Way–and
plug those parameters into GIZMO and allow it
to manage the rest of the physics as usual. How-
ever, the simplicity of this approach comes at the
steep price of computation time.

Since we are not interested in the evolution

of the host halo, keeping track of all of its con-
stituent particles throughout each timestep of the
simulation would be extremely inefficient. The
bulk of the mass of the halo is concentrated in
the host, meaning there are far more simulated
particles in the host than in our subhalo. The re-
sult is that most of our computational power will
be spent calculating changes in particles which
are of no interest to our research.

2.2.7 Using an analytic host

Another option is to represent the host halo as an
analytic potential acting on the simulated sub-
halo. This certainly reduces unnecessary com-
putation, since no particles in the host halo are
resolved. However, the ground gained in terms
of computational ease must be paid for in terms
of the complexity of the method.

While before the probability of interaction
could be computed directly. The solution for
finding the probability of interaction for an ana-
lytic host is more involved.

2.3 Analytic host implementation
All credit for the below derivations is owed to Professor Manoj Kaplinghat. I have included them
here for brevity, but these are not solutions I devised.

In order to calculate a probability of interaction for each particle, we will first define a priori
the final form of the probability before defining the terms which are required to calculate it. For a
particle at radius r from the center of the analytic potential, the probability of interaction between
it and the host halo is given as:

P = ∆t ρ(r)J (r) (5)

Here P is the dimensionless probability, ∆t is the simulation timestep, and ρ(r) is the density
of the host halo at the particle’s position r 1. The last quantity J (r) has units of Mpc3

s·M�
and rep-

resents the weighted probability of interaction between the particle and the background velocity
distribution of the host halo and can be written explicitly in the following form:

J (r) =
∑
i

F(vr,i, vt,i|r)
∫

dvr

∫
dvt

∫ 2π

0

dφ

2π∆vr,i∆vt,i
|v − vs| × σm(|v − vs|) (6)

We can replace the first term in the equation as F(vr,i, vt,i|r) = 2πvtf(vr, vt, φ|r). This is
useful since f is measured from results of N-body simulations. We can further simplify equation

1We align the center of the simulation with the center of the host halo, thus rhost = rparticle
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(6) by creating discrete bins in vr and vt again based on data from N-body simulations of the Milky
Way. These represent the average radial and tangential velocities at a given radius. Since we are
not working with discretized bins, we can simplify the integrals over dvr and dvt by replacing them
with the bin sizes for the same quantities.

J (r) '
∑
i

2πvtf(vr, vt, φ|r)∆vr,i∆vt,i
∑
j

∫ 2π

0

dφ

2π∆vr,i∆vt,i
|v − vs| × σm(|v − vs|)

∣∣∣
{vr,j ,vt,j}

(7)
Since the end goal is to devise a method that is far less computationally intense than simulating

the host halo, we want to calculate ahead of time as many values of the above equation as possible.
By computing values that do not depend on the particle in question, and storing them in memory,
we can avoid unnecessary repeated calculations. Recall that the host interaction probability is
calculated once per particle per timestep, so efficiency is imperative. We will next define two
parameters A and B whose purpose will become clear momentarily.

A =
√
v2 + v2s − 2vrvs,r, (8)

B =
2vtvs,t

v2 + v2s − 2vrvs,r
(9)

We can now input these parameters to the integral I in equation (7)

I =

∫ 2π

0

dφ

2π
g
(
A
√

1 +B cos(φ− φ0)
)

(10)

Here g(x) = x · σ0/(1 + x4) and the bounds on A and B are A ≥ 0 and 0 ≤ B ≤ 1. After a some
changes of variables, integration bounds, and variable substitutions, we arrive at an equation for I
as follows:

I = g (A)
1

π

∫ 1+B

1−B
dξ

g(A
√
ξ)

g(A)
[(1 +B − ξ)(ξ − (1−B))]−

1
2 (11)

Once this integral is calculated, we can plug it back into equation (7) and solve for J (r). Once
this is solved we can take the ratio of the ith bin result of J (r) and the sum of J (r) across all bins,
and plug this back into equation (5) to solve for the probability of interaction for a given particle.
The computation of this integral is likely the most resource-intensive, this is why we choose to
calculate it once at runtime, rather than at each timestep. Calculating it ahead of time and storing
it in a 2D interpolation grid is the focus of section

3 Results & Discussion
GIZMO is written in the coding language C. It uses libraries such as the GNU science library
(GSL), fast Fourier transform (FFTW), and MPI for parallelization. When adding functionality
to the code to account for the host to subhalo interactions, it is important to preserve the original
functionality of the code and extend it. To facilitate this we add a flag to GIZMO’s configuration
that when toggled in the Config.sh file, will enable host-subhalo interactions. However, when the
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flag is not enabled, the code will act identically to stock GIZMO with no modifications. This is
achieved by wrapping all-new functions, variables, loops, etc. within compile-time preprocessor
directives which check to ensure the flag is toggled in the configuration file before including the
content in the compiled binary. These preprocessor directives have been omitted from the included
code for simplicity, but assume for all code blocks described below, they are only active given the
flag in Config.sh.

3.1 2D interpolation of I
One of the most computationally demanding aspects of this method of calculating host-subhalo
interactions is the calculation of the integral in equation (11). We use a numerical integration
approach that converges on a value within some error of the true value. This method is quite fast
but it is still demanding when considering the sheer number of times it would need to be computed.
So rather than calculate this integral for each particle at each timestep of the simulation, the integral
is instead computed several hundred times as a function of parameters A and B then stored in an
interpolation grid at runtime for use throughout the simulation.

3.2 Required functions
In order to calculate all the integral values and store them in a grid, we first need to define the
function g(x) which is referenced in the integrand. Since we only want to apply interaction velocity
scaling at the request of the user, we start by checking for the velocity scale flag and if it is toggled,
we apply the scaling. The function then returns a double based on the definition of g(x) given in
the methods section.

1 double g func ( double x ) {
i f ( A l l . DM In te rac t ionVe loc i t ySca le >0) {double x = x / A l l .
DM In te rac t i onVe loc i t ySca le ;}

3 r e t u r n x * A l l . DM Interact ionCrossSect ion / ( 1 + x * x * x * x ) ;
}

We next define a function representing the closed form of the integrand, which will be used
to calculate the numerical integral. The below code defines a function integrand which takes two
arguments, the value of the variable being integrated over, as well as a void pointer, responsible for
storing all the other constants, and parameters that need to be passed to the function to recreate the
integrand in equation (11).

When the function is called, it casts the void pointer to a pointer of type int params, a structure
of two doubles one storing A the other B. It then returns the result of the integrand in equation 11,
using the correct values of A and B stored in the pointer p. The function also makes references to
our previous definition of g func.

double in tegrand ( double x , vo id *p ) {
2 s t r u c t in t params * params = ( s t r u c t in t params * ) p ;

r e t u r n g func ( params−>A* s q r t ( x ) ) / g func ( params−>A) * 1 . 0 / s q r t ( ( 1 +
params−>B − x ) * ( x + params−>B − 1) ) ;

4 }
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3.3 Initializing the interpolation grid
Having defined both of the relevant functions of the integral I, we can now create our 2D inter-
polation grid. For this, we use GSL’s gsl interp2d library. We begin by allocation memory for the
set of points A and B which define the shape and number of computed values in the grid along
with memory for the points I. The number of points I is the product of the length of the vector
of A points and the length of the vector of B points. We now want to define our set of A and B
points by populating the array with a number of evenly spaced points equal to Ares and Bres for
Amin ≤ A ≤ Amax and Bmin ≤ B ≤ Bmax respectively. Here the limits of B are defined unilaterally
as Bmin = 0 and Bmax = 1, while the limits of A are defined with respect to the velocity interaction
scale set by the user.

The function then allocates memory for the grid, storing the results in the globally accessible
sh interp2d integral. To improve the speed at which results are queried from the grid, we define
two acceleration pointers for A and B which keep track of the previous A and B parameters
requested to be able to more quickly provide responses in the event we request an interpolated
value close to another previously requested one.

After correctly formatting our previously defined functions and structures in a way to make
them usable by the GSL library, we enter a nested for loop, which iterates over all combinations
of A’s and B’s within the set of points A pts and B pts. For each point (A,B) we evaluate the
numerical integral to within an acceptable relative error (1e − 4) using the non-adaptive Gauss-
Kronrod integration method within the GSL library. The function then stores this value times g(A)

π

into the corresponding grid point based on A and B. Once the function has looped through all the
A andB points, it then initializes the grid with all the correct values and dimensions. This function
is called only once during the startup of the simulation and can be queried at any time to produce
an accurate estimate of the value of the integral at the given parameters, without substantially
affecting the computation time, since we are checking an interpolated value rather than calculating
an integral.

vo id i n i t i n t e r p g r i d ( )
2 {

A pts = mal loc ( A res * s i z e o f ( double ) ) ;
4 B pts = mal loc ( B res * s i z e o f ( double ) ) ;

I p t s = mal loc ( A res * B res * s i z e o f ( double ) ) ;
6 f o r ( i n t i = 0 ; i < A res ; i ++) { * ( A pts + i ) = i * ( ( double ) A max /

A res ) ;}
f o r ( i n t j = 0 ; j < B res ; j ++) { * ( B pts + j ) = j * ( ( double ) B max /

B res ) ;}
8 s h i n t e r p 2 d i n t e g r a l = g s l i n t e r p 2 d a l l o c ( g s l i n t e r p 2 d b i l i n e a r ,

A res , B res ) ;

10 A in te rp acc = g s l i n t e r p a c c e l a l l o c ( ) ;
B in te rp acc = g s l i n t e r p a c c e l a l l o c ( ) ;

12

g s l f u n c t i o n F ;
14 F . f u n c t i o n = &in tegrand ;

s t r u c t in t params params ;
16
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f o r ( s i z e t i = 1 ; i < A res ; i ++) {
18 f o r ( s i z e t j = 1 ; j < B res ; j ++) {

20 params .A = * ( A pts + i ) ;
params .B = * ( B pts + j ) ;

22

F . params = ( vo id * )&params ;
24

s i z e t neval ;
26 double r e s u l t , e r r o r ;

double lbound = 1 − * ( B pts + j ) ;
28 double ubound = 1 + * ( B pts + j ) ;

30 i n t code = g s l i n t e g r a t i o n q n g (&F , lbound , ubound , epsabs ,
epsre l , &r e s u l t , &er ro r , &neval ) ;

g s l i n t e r p 2 d s e t ( s h i n t e r p 2 d i n t e g r a l , I p t s , i , j , g func (
params .A) * r e s u l t / M PI ) ;

32 }
}

34 g s l i n t e r p 2 d i n i t ( s h i n t e r p 2 d i n t e g r a l , A pts , B pts , I p t s , A res ,
B res ) ;

}

As mentioned before the above code produces a 3D grid of values. In order to verify that this
function produces a correct grid of values, it was checked the same grid produced in Mathemat-
ica. The results can be seen in the figure below. The side-by-side comparison shows very good
agreement between the two methods so we can proceed with relative confidence.

Figure 4: A plot of the grid of interpolated values for 0 ≤ A ≤ 500 and 0 ≤ B ≤ 1 for a velocity interaction scaling of w = 200km/s. On the left
is a plot of the points produced in the above function. The right is a plot produced from mathematica with its build in integration and grid functions.

13



3.4 Interpolation lookup
Now that we have an interpolation grid we need a new function to act as a lookup function. It
takes two arguments, A and B, and returns a value of the integral I regardless of the parameters
passed to it. This is important since querying the GSL interpolation grid for values outside the
bounds for A and B will result in an error, potentially crashing the simulation and corrupting the
data collected. To avoid this, our new lookup function will take any values of A and B and return
an accurate result.

It first checks if the point passed lays within the interpolation grid produced in the previous
section. If the point is within the grid we simply query the grid for the result and return the given
value. Next, if the point (A,B) is within bounds of B but below the minimum value of A, we can
calculate an analytic solution to the function. This is because in the limit where A is quite low,
its dependence drops out of equation (11) and we are left with an integral which can be solved
analytically. Namely:

I = g (A)
1

π

∫ 1+B

1−B

√
ξ [(1 +B − ξ)(ξ − (1−B))]−

1
2 dξ (12)

The calculation of this analytic integral is to be added at a later date. Finally, if the points A
and B passed to the function lay outside the limits of B or above the upper bound on A, we return
0. This corresponds to zero probability of interaction. Points outside the bounds on B represent
non-physical values, and should not be considered, while values above the upper limit ofA are still
physical, they are well approximated by zero.

1 double i n t e g r a l l o o k u p ( double A, double B) {
i f ( ( A > A min && A < A max ) && (B > B min && B < B max ) ) {

3 r e t u r n g s l i n t e r p 2 d e v a l ( s h i n t e r p 2 d i n t e g r a l , A pts , B pts ,
I p t s , A, B, A in te rp acc , B in te rp acc ) ;
}else i f ( ( B > B min && B < B max ) && A <= A min ) {

5 / * A n a l y t i c s o l u t i o n to be added . * /
}else { r e t u r n 0;}

7 }

3.5 Probability of interaction
To calculate the probability of interaction between a given particle and the host halo we need to
know some information about the region of the host halo local to the particle in question. Namely,
we need to know the host background density. To do this a function has been included which takes
the particle radius2 as an argument and returns the NFW density of the Milky Way at the point r.

1 double NFW density calc ( double r ) {
double x= r / SH Rs ;

3 r e t u r n SH p const / ( x *(1+ x ) *(1+ x ) ) ;
}

2See footnote 1
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Given all the above functions we can now calculate the probability of interaction between a
given subhalo particle and its analytic host halo. The function begins by taking in as arguments the
particle mass, the particle position r, the particle velocity V and position Pos, and the timestep dt.

To calculate the probability of interaction we follow closely with the procedure laid out in sec-
tion 2.3. We begin by calculating the magnitude of the particle’s velocity converting to physical
units. We next generate angles θ and φ from the particle position to be used later in the calculation
of the radial and tangential velocities of the particle. Next, the function pulls the values of vr and
vt (the radial and tangential velocity of the background host halo) from tables based on the particle
position. After calculating the magnitude of the background halo velocity, we can get values for A
and B, which are passed to our integral lookup function, before calculating the background den-
sity from particle position and then multiplying the product together to generate a dimensionless
probability of the form given in equation (5).

There are a few aspects of the code which have not yet been implemented. While the data
has been collected we have not yet incorporated the velocity profiles of the Milky Way into a
function that calculates based on the particle’s position. Additionally, as seen in section 4, there
is a preliminary function written up for the calculation of the first term in equation (7), named
”dagger” in the probability function, but it has not yet been verified.

double p r o b o f h o s t i n t e r a c t i o n ( double mass , double r , double V [ 3 ] ,
double Pos [ 3 ] , double d t )

2 {
double Vmag = s q r t (V [ 0 ] * V[ 0 ] +V [ 1 ] * V[ 1 ] +V [ 2 ] * V [ 2 ] ) / A l l . c f a t ime ;

4 double the ta = acos ( Pos [ 2 ] / r ) , ph i = atan ( Pos [ 1 ] / Pos [ 0 ] ) ;
double vs2 = Vmag*Vmag;

6 double vsr = V [ 0 ] * s in ( the ta ) * cos ( ph i ) + cos ( the ta ) * (V [ 1 ] * s in ( ph i ) +
V [ 2 ] ) ;

double vs t = s q r t ( ( V [ 0 ] * cos ( the ta ) * cos ( ph i ) + V [ 1 ] * cos ( the ta ) * s in (
ph i ) − V [ 2 ] * s in ( the ta ) ) * (V [ 0 ] * cos ( the ta ) * cos ( ph i ) + V [ 1 ] * cos ( the ta
) * s in ( ph i ) − V [ 2 ] * s in ( the ta ) ) + (V [ 0 ] * s in ( ph i ) −V [ 1 ] * cos ( ph i ) ) * (V
[ 0 ] * s in ( ph i ) −V [ 1 ] * cos ( ph i ) ) ) ;

8 double vr = 0 , v t = 0 ;
double v2 = vr * v r + v t * v t ;

10 double A = s q r t ( v2 + vs2 −2* vr * vsr ) , B = 2* v t * vs t /A ;
double I v a l = i n t e g r a l l o o k u p (A, B) ;

12 double dagger = 0 ;
double NFW rho = NFW density calc ( r ) * A l l . c f a 3 i n v ;

14 double u n i t s = UNIT SURFDEN IN CGS ;
i f ( A l l . DM In te rac t ionVe loc i t ySca le >0) {double x=Vmag/ A l l .
DM In te rac t i onVe loc i t ySca le ;}

16 r e t u r n d t * NFW rho * dagger * I v a l * u n i t s ;
}

3.6 Momentum transfer
The other half of the method relies on being able to accurately apply the momentum kick to the
subhalo particle once we have determined an interaction to have occurred. Unlike interactions
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within the subhalo, for interactions between the subhalo and the host, we are only interested in
the momentum transfer to the subhalo particle. Since the host is represented analytically, we are
not gathering any information on changes to it, and thus we can ignore the momentum transfer to
the host. To calculate the momentum transfer for the subhalo particle, we do not need to create
a new function but rather we need to be clever about the parameters passed to the existing kick
calculation built into GIZMO.

1 vo id c a l c u l a t e i n t e r a c t k i c k ( double dV [ 3 ] , double k i ck [ 3 ] , double m)
{

3 double dVmag = (1− A l l . DM Diss ipat ionFactor ) * s q r t (dV [ 0 ] * dV [ 0 ] +dV [ 1 ] *
dV [ 1 ] +dV [ 2 ] * dV [ 2 ] ) ;

i f (dVmag<0) {dVmag=0;}
5 i f ( A l l . DM KickPerCol l is ion >0) {double v0= A l l . DM KickPerCol l is ion ;

dVmag= s q r t (dVmag*dVmag+v0 * v0 ) ;}
double cos the ta = 2 .0* gs l r ng un i f o rm ( random generator ) −1.0 ,

s i n t h e t a = s q r t (1. − cos the ta * cos the ta ) , ph i = gs l r ng un i f o rm (
random generator ) *2 .0 * M PI ;

7 k i ck [ 0 ] = 0 . 5 * ( dV [ 0 ] + dVmag* s i n t h e t a * cos ( ph i ) ) ;
k i ck [ 1 ] = 0 . 5 * ( dV [ 1 ] + dVmag* s i n t h e t a * s in ( ph i ) ) ;

9 k i ck [ 2 ] = 0 . 5 * ( dV [ 2 ] + dVmag* cos the ta ) ;
}

This function–already defined in GIZMO–takes in a 3-vector of the relative velocity between it
and its interaction partner, the particle mass, and an empty 3-vector in which to store the velocity
change in each Cartesian coordinate. It then calculated the magnitude of the relative velocity,
applies velocity dependent scaling if applicable, then recreates isotropic scattering by randomly
selecting scattering angles, before finally converting these into velocity boosts in each Cartesian
coordinate.

For the purposes of an analytic host, we already needed to calculate the velocity in spheri-
cal coordinates of the region of the host halo background with which the particle interacted. To
calculate apply this towards the calculation of kick, we need to transform these to Cartesian coor-
dinates, calculate the relative velocity between the patch of background and the particle, and pass
that through to the above function to generate the kick vector.

3.7 Timestep loop
The final aspect of the code is to incorporate all the above functions into the codebase in the correct
locations and make calls to them where necessary. As described in 2.2.4 GIZMO has a neighbor
search loop built into its code. The additional calculation of the probability of interaction with the
host and the calculation of the kick–provided an interaction occurs–are both included just prior to
the search for neighbors. At each timestep GIZMO loops through all the particles in the simulation,
checks to see if a given particle has an interaction on that timestep with the host, provides a boost
if it does, then proceeds to search for nearby SIDM particles within the subhalo to interact with.

i f ( ( ( 1 << l o c a l . Type ) & (DM SIDM) ) )
2 {

double r = s q r t ( l o c a l . Pos [ 0 ] * l o c a l . Pos [ 0 ] + l o c a l . Pos [ 1 ] * l o c a l . Pos
[ 1 ] + l o c a l . Pos [ 2 ] * l o c a l . Pos [ 2 ] ) ;
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4 double prob host = p r o b o f h o s t i n t e r a c t i o n ( l o c a l . Mass , r , ke rne l .
h i , l o c a l . Vel , l o c a l . Pos , l o c a l . dt ime ) ;

i f ( prob host > 0 .2 ) {out . dt ime sidm = DMIN( out . dt ime sidm , l o c a l .
dt ime * ( 0 . 2 / prob host ) ) ;}

6 i f ( g s l r ng un i f o rm ( random generator ) < prob host )
{

8 double k i ck [ 3 ] ; c a l c u l a t e i n t e r a c t k i c k ( l o c a l . Vel , k ick , l o c a l .
Mass ) ;

i n t i ; f o r ( i = 0 ; i <3; i ++) {
10 #pragma omp atomic

l o c a l . Vel [ i ] += k i ck [ i ] ;
12 }

}
14 }

4 Future Work
In several places in section 3, there calls for future work. While lots of progress has been made
on the modifications to GIZMO the project is not yet complete. Most of the necessary additions
are minor, one in particular (for which an untested implementation is included below) is large.
The project will continue, with my graduate student mentor taking over for the remainder of the
changes. Several weeks were spent bringing him up to speed on the status of the project, going
over aspects of the code that may be confusing, extensively documenting the changes in the form
of official documentation as well as code comments, and providing guidance on working with the
code, pushing changes to the git repository and programming in C.

4.1 Summation of f in velocity bins
To calculate the first summation of equation (7), we need to construct bins in radial and tangential
velocity for the host and calculate the value of f in each bin. Since this portion has no dependence
on the particle in question, we can compute it once at runtime, store it in memory, and access it
globally through a list of values.

In the function scriptF, we will take in as arguments the radius r and the radial bin number,
r bin3. We then loop through the number of velocity bins and store the value of the resulting
formula in each cell of the array under index i4. The function then enters a nested loop which
iterates over both the radial bins and the velocity bins, and sums over the radial velocity bins and
stores them in an array based on radius sum fF. This vector can not be called in the probability of
interaction with host function and is only computed once, and thus has a minimal computational

3It is possible to take in either just the radius or the bin and convert one to the other. This however has not yet been
implemented in any way.

4We will define the numbers of bins in r and in tangential and radial velocities in a header file rather than on lines
2 and 3. This also goes for the variables fF and sum fF, they will be declared in a globally available header file, then
initialized in this function’s loops.
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impact.
2πvt,if(vr, vt, φ|r)∆vr,i∆vt,i (13)

double s c r i p t F ( double r , i n t r b i n ) {
2 const s i z e t num bins = 15;

const s i z e t num rbins = 14;
4

double fF [ num rbins ] [ num bins ] ;
6 f o r ( i n t i ; i < num bins ; i ++) {

double dagger = 2*M PI * v e l t b i n s [ i ] * f v r [ i ] [ rad ] * f v t [ i ] [ rad
] * ( v e l t b i n s [ i +1]− v e l t b i n s [ i ] ) * ( v e l r b i n s [ i +1]− v e l r b i n s [ i ] ) ;

8 fF [ r b i n ] [ i ] = dagger ;
}

10

sum fF [ num rbins ] ;
12 f o r ( i n t i ; i < num rbins ; i ++) {

double sum value = 0;
14 f o r ( i n t j ; j < num bins ; j ++) {

sum value += fF [ i ] [ j ] ;
16 }

sum fF [ i ] = sum value ;
18 }
}

4.2 Anisotropic scattering
As mentioned in section 2.2.5, we briefly mention that at present GIZMO assumes all scattering
with SIDM occurs randomly, with equal probability, at all angles. This is a common example of
Monte Carlo simulations which rely on large numbers of events to be able to randomize the pa-
rameters of the simulated events within a given range. Here were are randomizing the angle along
the interval (0, 2π). However, the code should take into consideration the fact that the possible an-
gles of scattering are sharply peaked in the forward direction. When two particles collide, it is far
more likely that they interact and scatter forward, than it is they scatter backward, or orthogonally
to the CM frame. This correction will likely be minor and shouldn’t be prohibitively difficult to
implement at a later date.

4.3 Testing
While individual aspects of the code have been tested, no testing has yet been run on the complete
method. Once the remainder of the changes have been implemented into the code, extensive testing
and data analysis should be done, under close supervision from an expert in the field, to ensure that
no mistakes were made and that the code is capturing true physics. Given that the group has access
to several computer clusters and has a sizeable allotment of time on those clusters, this should be
a fairly straightforward task, and one that I wish I could be a part of.
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5 Conclusion
Modifications to the GIZMO simulation suite were made, with over 60 code commits in total.
These changes vary from minor corrections to existing comments, to two additional configurations
for computer clusters, to large methods incorporating data to calculate particle interactions. We
devise a new method for calculating the probability of interactions between a simulated subhalo
and its analytic host. From this probability, we can quickly estimate the likelihood that a given
particle at a given timestep would interact with a particle in the host halo, then use information
about the particle’s position and the properties of the host halo to calculate the momentum change
of the particle in the subhalo.

The effects of host-subhalo interactions are not small, during infall subhalos can experience
large amounts of ram pressure as a result of their motion through the host halo’s background den-
sity. This ram pressure is likely to come with large numbers of interactions between the particles
of the subhalo and those of the host. These results could alter the time evolution of subhalos in
simulations and could better approximate their true evolution, provided the SIDM model continues
to solve issues other dark matter candidates cannot.

While the changes have not been tested in their entirety, they have been individually tested,
check for errors, and where possible results have been analyzed. Preliminary results–prior to the
incorporation of much of the code–showed an increase in computation time of approximately 20%.
The expected increase in computation time with all of the code in place is much higher, but this
suggests it will likely still be substantially more efficient than simulating the entire host halo with
live particles throughout the simulation.
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